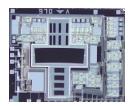


R6xxxx Serial

Six-channel incremental encoder chip

Data Sheet


Description:

R6xxxx series is a high performance, low cost, six-channel incremental encoder chip. It integrates precision grating phase array internally. With a high collimated light source and code wheel, it can sense rotary information of the servo motor. If a good parallel light source is used, the chip can be easily installed with a large tolerance.

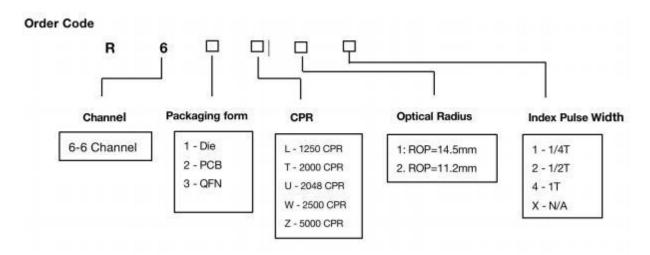
R6xxxx series is designed with optical center as 14.5mm and 11.2mm, standard CPR for 1250, and 2500. In this way, clients' installation is simple and will be convenient for mass production.

The index (Z) signal of the device provides 1 pulse (1T) width, 0.5 pulse (0.5T) width, and 1/4 pulse (1/4T) width.

The A/B signal of device has two times interpolation function, which makes it easy to obtain 5000CPR, simplifying complex process and improving production efficiency.

Features:

- Photodetector Array
- Pulse: 1024—5000PPR
- Low Cost
- -40 °C-- +105 °C Operating Temperature
- No Signal Adjustment Required
- Optional Z Pulse Width
- TTL Compatible
- Single 5V Supply


Applications:

Servo Motor

Note: Not recommended for use in safety critical application. Eg. ABS braking system.

Model information

Absolute Maximum Ratings

Ts	-40 °C +105 °C
TA	-40 °C +105 °C
Vcc	-0.5V 7V
CL	<100pF
f	500KHz
	TA Vcc

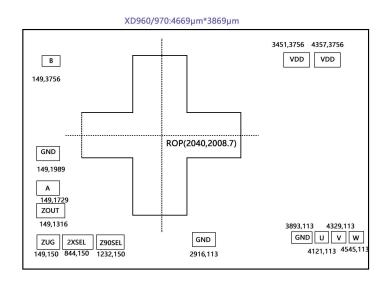
Recommended Operating Conditions

Operating Temperature	Т		-40 °C 105 °C
Supply Voltage	Vcc	Ripple voltage<100mV	4.5V 5.5V
Output Voltage	Vo		-0.5v Vcc
Output Current per Channel	lout		-0.1mA3.5mA

Electrical Characteristics

Electrical Characteristics over Recommended Operating Range, Typical at 25° C

Parameter	Symbol	Min.	Тур.	Max.	Units	Condition
Received optical power	P_RL	200		2000	μ W	
Wavelength	λw	630		860	nm	
Supply Current	I _{cc}		55	65	mA	
Low Level Output Voltage	V _{OL}		0.4	0.5	V	2kΩ Pull-up inside
High Level Output Voltage	V _{OH}	4	4.8		V	2kΩ Pull-up inside
A/B Rise Time	t _r		100		ns	2kΩ Pull-up inside , CL=8PF
A/B Fall Time	t _f		50		ns	2kΩ Pull-up inside , CL=8PF


Die information

R6xxx six-channel series die size and other information is as follows.

Dimensions 4669µm x 3869µm

Optical center (A,B code channel center) position (2040,2008.7)

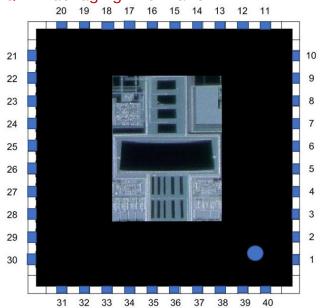
Below are the coordinates of bonding pads for dies.

Pin Definitions and Functions

(Clockwise direction)

Pin Name	Function	Input/Output
VDD	Power supply +, 5V	Power Supply
W	W Channel Output	Output
V	V Channel Output	Output
U	U Channel Output	Output
GND	Ground	Power Supply
Z90SEL	Index 1/4T output selection, enable for grounding	Input
2XSEL	2x interpolation selection, grounding indicates double frequency	Input
ZUG	Index ungated signal output	Output
ZOUT	Index gated signal output	Output
А	A Channel Output, 2kΩ Pull-up inside	Output
В	B Channel Output, 2kΩ Pull-up inside	Output

Note: both VDD chips need to be connected

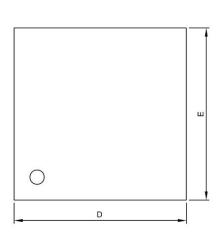

Index Gated Signal

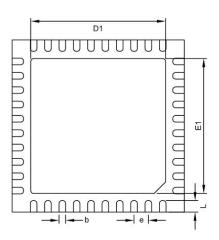
Selection

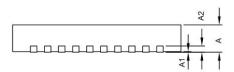
2XSEL	Z90SEL	ZOUT	ZOUT Logical Relationship
High	Low	1/4T	ZOUT=(/A)*(/B)*ZUG
High	High	1/2T	ZOUT=(/B)*ZUG
Low	Low	1T	ZOUT=(/A)**ZUG
Low	High	1/2T	ZOUT=(/A)*(/B)*ZUG

QFN Packaging Information

QFN The pin's arrangement is shown on the left. The pin's definition is as follows:


- 2: B
- 6: GND
- 7: A
- 8: ZOUT
- 11: ZUG
- 12: 2XSEL
- 13: Z90SEL
- 16: GND
- 17: GND
- 18: U
- 19: V
- 20: W
- 31: VDD
- 32: VDD




QFN optical center position of chip:

The AB center is the optical center, which is consistent with the mechanical center of QFN chip.

Mechanical dimensions:

0 11		DIMENSION IN MM			DIMENSION IN INCH			
Symble	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α	0.80	0.90	1.00	0.0315	0.0354	0.0394		
A1	0.00		0.05	0.0000		0.0020		
A2	0.19	0.20	0.21	0.0075	0.0079	0.0083		
D	5.95	6.00	6.05	0.2343	0.2362	0.2382		
E	5.95	6.00	6.05	0.2343	0.2362	0.2382		
D1	4.55	4.65	4.75	0.1791	0.1831	0.1870		
E1	4.55	4.65	4.75	0.1791	0.1831	0.1870		
b	0.18	0.23	0.28	0.0071	0.0091	0.0110		
е	0.50 BSC			0.50 BSC 0.0197 BS		0.0197 BSC		
L	0.35	0.40	0.45	0.0138	0.0157	0.0177		

Design guidance of Code Wheel

For further code wheel design documents, please contact our sales.